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Abstract

A numerical model capable of simulating the freezing of aqueous solution flow in saturated porous media is presented. This

model is based on a finite-difference approximation of the coupled equations for liquid water flow, heat and solute transport and

phase change. The phase change equation facilitates the condition for the special case when liquid water and ice can reside in the

pore space simultaneously, leading to a ‘mushy’ zone. Results are presented to show the evolution of multiple frozen regions

growing by a chain of freezing pipes. Two different regimes for the evolution of frozen bodies are distinguished based on system

parameters. For the regime with lower freezing rate separate frozen bodies exist at steady-state, while for higher freezing rate the

regime is characterized by linked frozen bodies. The numerical solution for the first regime is tested by a semi-analytical solution for

the case of fresh water. For the second regime the model is able to simulate the process up to the point when linking of the separate

frozen bodies occurs. For both regimes freezing is hindered downgradient of the freeze pipe where solute becomes highly con-

centrated, and a wedge of unfrozen media forms. For the first regime the wedge eventually forms into a liquid ‘island’ surrounded by

ice-bearing porous media.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The freezing of saturated geological material is a
technology that can be applied beneficially to solve
problems faced in groundwater contaminant remedia-
tion and in construction activities. One particular ap-
plication involves the isolation of a saturated region
from the main groundwater flow by using a series of
vertical freezing pipes to produce a line of linked frozen
bodies essentially impermeable to groundwater flow
[1,2]. Prediction of the process of frozen barrier forma-
tion and the design of mechanical/thermal systems to
produce a frozen barrier involves the specification of
equations for fluid flow, heat and solute transport, and
phase change. These equations are rather complicated,
therefore, most research efforts to date have studied the
equations under simplifying assumptions.

The equilibrium shape of a frozen body grown by a
freeze source in an air-free porous medium saturated by
fresh water was studied by Goldstein and Reid [3] and in
series of publications by Kornev et al. [4–6]. They for-
mulated the problem by classical mathematical ap-
proach called here the Stefan model, and applied a
complex variables technique to develop a semi-analyti-
cal solution.

The Stefan model is based on the presence of a sharp
interface dividing the whole domain on two subdomains:
the unfrozen ice-free and the fully frozen water-free re-
gion. It is known from the literature [7–10] that in reality
there exists an interfacial zone, with ice and liquid being
present in the pore void, sandwiched between the fully
frozen region and the unfrozen region. This interfacial
zone is produced by the variation in freezing tempera-
ture, such variation being due to capillary effects [8,11] or
osmotic potential effects [10,12]. The osmotic potential
effect is seen, for example, during the solidification of
binary solutions [9,13,14]. A full model of freezing
should incorporate the effects of both capillarity and
osmotic potential, as both forces will have a significant
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impact on different stages of the frozen barrier evolution
and maintenance. In this paper, we focus only on the
barrier evolution stage. This stage is viewed to be a short-
term process accompanied by a high external thermal
input to the saturated porous medium. In this situation,
it seems reasonable to ignore prevalent mechanisms of
capillarity and diffusion which are negligibly small in
comparison with osmotic forces and fluid convection,
respectively. This assumption should be valid for coarse-
grained porous media with a strong groundwater flow.
The contribution of capillarity and diffusion is appar-
ently essential for the long-term maintenance of frozen
barriers. However, a comprehensive analysis needs to be
done to study the long-term behavior of a frozen barrier,
and this is not within a scope of the present study.

In this paper, we will keep the nomenclature accepted
in solidification theory and refer to the unfrozen region
as the liquid zone, the fully frozen region as the solid zone,
and the interfacial region as the mushy zone, taking into
account the presence of the porous matrix in all regions.
It is emphasized that we deal only with air-free porous
media regardless of ice being present or not in pore voids.

In the liquid and solid regions the system of equations
is well-known and may be written as in [15], while to
study the macro-scale dynamics of the transport pro-
cesses in the mushy zone, the amount of unfrozen liquid
is quantified by a liquid fraction function based upon a
condition of local thermodynamic equilibrium. There-
fore, the mathematical model consists of the set of
governing equations for mass of water, solute compo-
nent, and energy as well as local thermodynamic equi-
librium. It is very difficult to derive analytical solutions
due to the presence of solute, so a numerical solution
seems to be an appropriate tool to study the problem.
The objectives of this paper are (1) to present the deri-
vation of a numerical solution scheme capable of solving
the problem without separating the domain a priori into
liquid, solid and mushy subdomains and (2) to simulate
saturated porous media freezing by a chain of freezing
pipes to create a barrier to groundwater flow.

The paper is organized as the following. In Section 2,
we formulate the mathematical model and write the
system of equations equally suitable for the liquid, solid,
and mushy zones. Discretization of the balance equa-
tions and the procedures for the numerical solution are
presented in Section 3. In Section 4, numerical results for
the case of solute-free water and for aqueous solutions
are presented. A semi-analytical solution [6] is used as a
point of comparison for these numerical solutions. Gen-
eral conclusions of the study are presented in Section 5.

2. Statement of problem

The physical system we study is shown in Fig. 1. We
consider a two-dimensional system in which frozen

volumes are developed by freeze pipes located in a
horizontal field of uniform fluid flow. Freeze pipes with
the freezing rate q form an infinite chain along the y-axis
with a distance 2l between each adjacent pair. At infinite
distance (x ! �1) upstream to the freeze pipe, the in-
coming liquid has the temperature T0 and the concen-
tration c0, and moves with the velocity V0 (Vx ¼ V0,
Vy ¼ 0). These boundary conditions also characterize the
system at the initial time (t ¼ 0).

The system of conservation equations for the aqueous
solution, solute and heat may be written as [10,16,17]

/
o

ot
ðqwS þ qið1� SÞÞ þ qwr 	 ~VV ¼ 0; ð1Þ

~VV ¼ �Krp; ð2Þ

/
oSc
ot

þr 	 ðc~VV Þ ¼ r 	 ð/SDrcÞ; ð3Þ

o

ot
ðCT þ qi/LSÞ þ Cwr 	 T~VV

� �
¼ r 	 ðkrT Þ: ð4Þ

In these equations, S is the saturation (degree of pore
void filled by liquid), ~VV is the liquid flux, p is the pressure
head, c is the concentration of aqueous solution, T is the
temperature, / is the porosity, D is the diffusion coeffi-
cient, C is the heat capacity, k is the thermal conduc-
tivity, L is the latent heat of freezing, q is the density, K
is the hydraulic conductivity, and subscripts ‘i’ and ‘w’
indicate ice and liquid respectively. Note that (1� S) is
the ice saturation, since the porous medium is air-free.
Also note that hydrodynamic dispersion has been ne-
glected in Eq. (3) because we assume the porous medium
to be homogeneous at all length scales.

Darcy’s law, given by (2), with the liquid fraction
dependent hydraulic conductivity KðSÞ is applied for
fluid flow, as done in previous studies on freezing of
saturated porous medium [10,11,17] as well as solidifi-
cation of binary solutions [9,13]. The hydraulic con-
ductivity function is given by KðSÞ ¼ K0Sn, where K0 is
the saturated hydraulic conductivity and the exponent n
is taken to be in the range 26 n6 3 [11]. Eq. (3) assumes

Fig. 1. Configuration of two-dimensional multiple frozen regions.

Frozen bodies developed around the freeze sources (shown as bold

dots) may eventually link and form a frozen barrier for liquid flow in

the porous media.
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that all solute is rejected into the liquid during freezing,
and ice always remains pure.

The four governing equations, (1)–(4), contain five
unknowns S, ~VV , p, c and T. The model is completed by
writing the condition of phase state distinguishing the
type of the region: liquid zone, solid zone or mushy
zone. For the first two types the condition is trivial. In
fact, saturation is equal to unity for the liquid zone,
while saturation is equal to zero for the solid zone. The
mushy zone is assumed to be in local thermodynamic
equilibrium so that the temperature relates to the con-
centration there by the following equation [12,13]:

qw

L
Tf
ðT � TfÞ þRTfc ¼ 0; ð5Þ

where Tf ¼ 273:15 K is the freezing temperature of pure
water, and R is the universal gas constant. Conditions
defining the type of zone may be summarized via the
following relationship illustrated in Fig. 2:

S 2 HðT � Tf þ ccÞ; ð6Þ

where c ¼ RT 2
f =ðqwLÞ is known as the cryoscopic con-

stant, andH is the Heaviside step-function multi-valued
at T ¼ Tf � cc. Eq. (6) means that the liquid zone
(S ¼ 1) exists if T > Tf � cc, the solid zone (S ¼ 0) exists
if T < Tf � cc, and the equilibrium condition (5) is ful-
filled within the mushy zone (0 < S < 1). In the mushy
zone the saturation must be found as a solution to the
system of equations (1)–(5). Eq. (6) is the general de-
scription incorporating all the zones, solid, liquid and
mushy. Therefore, the set of Eqs. (1)–(4), along with (6)
are suitable to describe all three zones.

Trying to keep the model as simple as possible, we
make the following assumptions. We ignore the change
in specific volume of water during phase transition. We
neglect a diffusive mechanism of solute transport, which
enables us to focus attention on the effects of forced
convection as well as heat transfer. This approximation
is valid if the Lewis number (Le ¼ k=ðCDÞ) is much
larger than unity, which is typical for liquids. For clarity

of presentation, both the heat capacity C and the ther-
mal conductivity k are also assumed to be constant.

Scaling unknowns with their reference values, we in-
troduce the following non-dimensional variables (de-
noted by subscript ‘u’)

xu ¼
x
l
; yu ¼

y
l
; tu ¼

tk
Cl2

;

pu ¼
pK0

lV0
; ~VVu ¼

~VV
V0

; Ku ¼
K
K0

;

Tu ¼
T � Tf

T0 � Tf þ cc0
; cu ¼

cc
T0 � Tf þ cc0

;

qu ¼
ql

kðT0 � Tf þ cc0Þ
:

The non-dimensional form of the conservation equa-
tions (1)–(4) and (6) is as follows (we drop the subscript
‘u’ for convenience):

r 	 ~VV ¼ 0; ð7Þ
~VV ¼ �KðSÞrp; ð8Þ

/t

oSc
ot

þ Per 	 ðc~VV Þ ¼ 0; ð9Þ

oT
ot

þ St
oS
ot

þ Per 	 ðT~VV Þ ¼ DT ; ð10Þ

S 2 HðT þ cÞ: ð11Þ

The non-dimensional parameters are the Peclet num-
ber, Pe, the Stefan number, St, and the thermal poros-
ity, /t:

Pe ¼ lCwV0
k

; St ¼ qi/L
CðT0 � Tf þ ccÞ ; /t ¼ /

Cw

C
:

For numerical calculations we consider the infinite
horizontal layer, �1 < x < 1; 06 y6 1. The line y ¼
1 is the line of symmetry between two freeze sources,
while the line y ¼ 0 is the line of symmetry passing
through the freeze source and the center of coordinates
x ¼ 0, y ¼ 0. Then, the system of equations (7)–(11) with
five unknowns ~VV , p, T, c, and S is complemented by the
following initial and boundary conditions (d is the Dirac
function):

t ¼ 0 : Vx ¼ 1; Vy ¼ 0; c ¼ c0; T ¼ 1� c0; ð12Þ
x ! �1 : Vx ¼ 1; T ¼ 1� c0; c ¼ c0; ð13Þ

x ! 1 : Vx ¼ 1;
oT
ox

¼ 0; ð14Þ

y ¼ 1 : Vy ¼ 0;
oT
oy

¼ 0; ð15Þ

y ¼ 0 : Vy ¼ 0;
oT
oy

¼ � q
2
dðxÞ: ð16ÞFig. 2. Liquid saturation vs. temperature. Mushy zone occurs if T �

Tf ¼ �cc.
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3. Numerical method

The system of governing equations (7)–(11) together
with initial and boundary conditions (12)–(16) is solved
numerically by applying a mesh-centered finite-differ-
ence method. For numerical simulation the infinite re-
gion is reduced to the domain xl 6 x6 xr, 06 y6 1. We
use the Cartesian grid (xi; yj) which is non-uniform in the
both x and y directions with variable grid spacings
hxi ¼ xiþ1 � xi and hyj ¼ yjþ1 � yj (�h

x
i ¼ 0:5ðhxi þ hxi�1Þ and

�hyj ¼ 0:5ðhyj þ hyj�1Þ). Grid spaces hxi and hyj are assumed
to be a constant within the region jxj < 1, 06 y6 0:05,
while outside this region they increase in geometric se-
quence (a ratio is taken less than 1.05) with increase of
both jxj and y.

Boundaries xl and xr are required to hold for the
boundary conditions (13) and (14) performed with the
following statements: (1) the hydrodynamic perturba-
tion does not reach either boundaries, (2) the thermal
perturbation does not reach the left boundary xl, (3) the
temperature gradient is equal to zero at the right
boundary x ¼ xr. Our simulations showed that the lo-
cations of the left and right boundaries of the compu-
tational domain are strictly dependent on the Peclet
number, and to satisfy the statements introduced above
their absolute values increase as Pe decreases.

The water mass balance equation (7) together with
Darcy’s law given by (8) is discretized resulting in the
following equation which may be treated as a discrete
equation for pressure head pij ¼ pðxi; yjÞ
ðKx þ KyÞp ¼ 0; ð17Þ

Kxp ¼ 1

�hxi
Kx

iþ0:5;j

pi;j � piþ1;j

hxi

�
þ Kx

i�0:5;j

pi;j � pi�1;j

hxi�1

�
;

Kyp ¼ 1

�hyj
Ky

i;jþ0:5

pi;j � pi;jþ1

hyj

 
þ Ky

i;j�0:5

pi;j � pi;j�1

hyj�1

!
with harmonic mean representing hydraulic conductiv-
ity and liquid fluxes defined as

Kx
iþ0:5;j ¼

2ki;jkiþ1;j

ki;j þ kiþ1;j
; Ky

i;jþ0:5 ¼
2ki;jki;jþ1

ki;j þ ki;jþ1

;

ki;j ¼ KðSi;jÞ; ð18Þ

V x
iþ0:5;j ¼ Kx

iþ0:5;j

pi;j � piþ1;j

hxi
;

V y
i;jþ0:5 ¼ Ky

i;jþ0:5

pi;j � pi;jþ1

hyj
:

ð19Þ

The energy balance equation (10) is discretized in time
using a fully implicit scheme for convective and con-
ductive terms (an upwind scheme has been taken for
convective term approximation)

Ti;j � ~TTi;j
s

þ St
s

Si;j
�

� ~SSi;j
�
þ PeðLx þ LyÞT þ KT ¼ 0;

ð20Þ

KT ¼ 1

�hxi

Ti;j � Tiþ1;j

hxi

�
þ Ti;j � Ti�1;j

hxi�1

�
þ 1

�hyj

Ti;j � Ti;jþ1

hyj

 
þ Ti;j � Ti;j�1

hyj�1

!
;

LxT ¼ 1

�hxi
V x
iþ0:5;jTi;j

�
� V x

i�0:5;jTi�1;j

�
;

LyT ¼ 1

�hyj
ðV y

i;jþ0:5Þ
þTi;j

�
� ðV y

i;j�0:5Þ
þTi;j�1

þ ðV y
i;jþ0:5Þ

�Ti;jþ1 � ðV y
i;j�0:5Þ

�Ti;j
�
:

Here, s is the time step, tilde indicates values at the
previous time level, while the other functions are taken
at current time level, and superscripts � denote the
positive and/or negative part of the function. The up-
stream weighting used for the LxT term is written for the
condition where V x > 0 everywhere.

For the purpose of developing an algorithm that
would be suitable for each type of zone, we reformulate
the model and replace the function of concentration c by
the function h ¼ Sc which represents an amount of
solute accumulated in the pore voids. This transforms
(11) to the following

S ¼ SðT ; hÞ ¼ 1 for T P � h;
�h=T for T 6 � h;

�
ð21Þ

which gives a single-valued dependence of liquid water
saturation on temperature. The reformulation forbids
an existence of a pure solid zone (S ¼ 0) because S ! 0
for T ! �1, and the mushy zone occurs for T 6 � h.
If we further substitute h in (9), it yields

/t

oh
ot

þ Per 	 h
S
~VV

� �
¼ 0:

One may see that the reformulation represents just a
mathematical trick, which provides a suitable numerical
method to attack a difficult non-linear problem.

Discretization of the balance equation for mass of
solute gives

/t

s
hi;j

�
� ~hhi;j

�
þ PeðLx þ LyÞ

h
S

� �
¼ 0; ð22Þ

where Lx and Ly are the operators defined above. It is
known that discretization of the transport equation
adopted in (22) results in numerical dispersion and,
hence, a front smoothing. Fortunately, for the problem
studied in this paper a front of concentration does not
exist as solute is present everywhere initially.

The following iterative procedure is used to solve the
system of non-linear discrete equations (17), (20)–(22)
with four unknowns p, T, S, and h. Each iterative sweep
has the following steps:
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(1) hydraulic conductivity is calculated by (18) using S
determined from the previous iteration, and pressure
head p is found by solving (17),

(2) liquid fluxes Vx and Vy are calculated by explicit for-
mulae (19),

(3) solute content h is calculated by solving (22),
(4) temperature T and saturation S are found by solving

(20) and (21) simultaneously with V and h defined at
the previous iteration step.

For Step 1 the linear elliptic equation is solved by ap-
plying a high performance linear multigrid method
[18,19]. Step 2 may be performed easily. In Step 3 to find
h we solve the linear equation (22) by a line Gauss–
Seidel method moving along x and generating a tri-di-
agonal matrix for each column. The tri-diagonal matrix
equation is solved using the Thomas algorithm [20]. Step
4 relates to the energy balance equation (20) containing
the non-linear term SðT Þ defined by (21). A fast con-
vergence Newton–Raphson method [20,21] is invoked
to solve (20) for temperature. This is expressed as

Ti;j � ~TTi;j
s

þ St
s

bSSi;j

0@ � ~SSi;j þ
dbSS
dT

�����
i;j

Ti;j
�

� bTTi;j

�1A
þ PeðLx þ LyÞT þ KT ¼ 0; ð23Þ

where hat indicates values at the previous iterative
sweep. This scheme works very well if the function SðT Þ
is smooth. Unfortunately, the function

dS
dT

ðT ; hÞ ¼ 0 for T > �h;
h=T 2 for T < �h

�
has a discontinuity at T ¼ �h. The value of ½dS=dT � ¼
1=h at the discontinuity approaches infinity for a case of
low initial concentration (c0 � 1). For such a case,
saturation changes from zero to one within a very small
zone treated as a freezing front. Iterating by the New-
ton–Raphson method causes an oscillation of the front
position over its actual location. A combination of the
Newton–Raphson method and any low-order iterative
method is found to resolve this problem. We used a
Gauss–Seidel method as a supplement to the Newton–
Raphson method. One step of the combined scheme
consists of a few (3–7) steps by Gauss–Seidel method
followed by one step with the Newton–Raphson method.
The algebraic non-linear equation

AT þ BSðT Þ ¼ F ðA > 0;B > 0Þ
arising at each step of the Gauss–Seidel method is solved
explicitly by

T ¼ ðF � BÞ=A for F � Bþ AhP 0;
F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ 4ABh

p� �
=ð2AÞ for F � Bþ Ah < 0;

�
where the constants A, B, and F are determined by the
values of temperature and saturation from the previous
iterative sweep. This iterative procedure for solving (20)

and (21) was found to have stable convergence for all
simulations. A linear multigrid method is used to solve
the linearized mesh problem given by (23).

4. Results and discussion

To verify the numerical model developed in Section 3,
the solution should be compared with an appropriate
analytical solution. The semi-analytical solution by
Kornev and Mukhamadullina [6] which provides the
equilibrium shape of the frozen region was used for this
verification. The results of the comparison of the semi-
analytical solution and the numerical solution are pre-
sented in Section 4.1. Following that verification, the
analysis is extended in Section 4.2 to the case of freezing
of aqueous solutions.

4.1. Freezing in the case of fresh water

The Stefan formulation characterized by the sharp
interface separating solid and liquid regions is widely
used for the study of fresh water freezing, i.e. c0 ¼ 0. For
this situation, the steady-state semi-analytical solution
[6] based on the complex variables technique gives an
equilibrium shape of individual disjoined frozen bodies.
The necessary condition for existence of this solution is
given by the inequality

q < 2Pe ð24Þ

We can confirm (24) by considering a heat balance over
the whole domain at steady-state. Integrating (10) and
using boundary conditions (13)–(16), it gives

q ¼ 2Pe T�ð � TþÞ; ð25Þ

where T� ¼ T ð�1; yÞ ¼ 1 is the input temperature
at the left-hand side, while Tþ ¼ T ð1; yÞ ¼ constant is
the output temperature at the right-hand side. The
temperature Tþ cannot be less than the freezing tem-
perature of pure water (0 �C) if there is to be liquid flow
at the right boundary at steady-state. Substituting the
inequality Tþ > 0 into (25) we obtain that the freezing
rate q should be less than 2Pe, leading to (24). For the
condition where q > 2Pe the individual frozen bodies
eventually link up, thereby halting all liquid flow.

The procedure, introduced in Section 3, with minor
modifications will be used for the numerical solution.
For the case c0 ¼ 0, Step 3 in the numerical procedure is
eliminated, and Eq. (11), as well as (21), is reduced to

S 2 HðT Þ: ð26Þ

In numerical simulations we use Eq. (21) instead of
(26), and assume that function h is given by a constant
very close to zero (10�5–10�6). This slightly smooths the
discontinuity in S over T ¼ 0.
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A uniform mesh with 64 nodes in the y direction and
non-uniform mesh with 256 nodes in the x direction is
used. The region jxj < 1 is covered by 128 nodes. We
take the time-step s being equal to about 105, repre-
senting a jump from the initial guess to the steady-state
condition. A main iterative cycle containing steps 1–4
within the time step is stopped if the norm of residuals
for Eqs. (17) and (20) becomes less than 10�5. To reach
convergence within a time step it usually required 7 or 8
main iterative cycles.

Numerical simulation results show that the domain
�1 < x < 1, 06 y6 1 is divided into two subdomains.
The first subdomain surrounds the freezing source
(x ¼ 0; y ¼ 0), and the function S is less than 10�5 at all
nodes contained within the subdomain. This represents
the solid region and may be treated as the frozen body.
The other subdomain represents the liquid region where
S � 1. Transition from the solid to the liquid region is
usually concentrated within two adjacent grid cells. The
isotherm T ¼ 0 is used to identify the freezing front.

Several steady-state frozen bodies are presented in
Fig. 3 for Pe ¼ 5. Solid lines numbered from 1 through 5
correspond to freeze rate q ¼ 5:208, 7.2, 8.8, 9.5, and
9.95 respectively. For small q, the frozen body is almost
a circle, and it increases infinitely along the liquid flow to
the right as q approaches 2Pe. The width of the frozen
body at x ¼ 1 is demarcated by the dashed horizontal
line for the limiting case q ¼ 2Pe. The numerical results
agree very well with the semi-analytical solution [6]
(dotted lines in Fig. 3).

The time-dependent version of the numerical pro-
cedure is also applicable and will be used in the next
section as a solution to the Stefan formulation to show
the discrepancy with the solution for the general case
c0 > 0.

4.2. Freezing in the case of aqueous solutions

Eq. (9) for the balance of solute is involved in the
numerical model when solute is present in the fluid. The

presence of the solute will lead to the depression of the
freezing temperature, thereby leading in general to a
frozen body in which the saturation lies in the range
0 < S < 1. In this section we are interested to address
two aspects. The first is to evaluate whether the ap-
proximation by the Stefan formulation can adequately
predict the outer shape of the frozen body in the case of
an aqueous solution. This requires determining how
much the frozen body shape obtained by solving the
problem in the general formulation (c0 > 0) is different
from the one obtained by the Stefan formulation
(c0 ¼ 0). The second aspect deals with the character of
the frozen body development in the presence of solute.
The numerical solution described in Section 3 will be
used to address these two aspects. Two cases repre-
senting two distinct parameter sets will be employed for
illustrative purposes.

The first case considered is for a parameter set where
q > 2Pe. The mesh used is the same as for the case of
fresh water. The parameters for this case are: c0 ¼ 0:5,
Pe ¼ 5, q ¼ 30, St ¼ 3, and /t ¼ 0:3. The growth of the
frozen body for this case is presented in Fig. 4 where
the outer boundary of the frozen body is defined by the
saturation isoline equal to 0.99. Isolines for saturations
of 0.03, 0.1, 0.25, 0.5, 0.75, and 0.9 are shown by the solid
lines, while the dashed line demarcates the interface ob-
tained by the Stefan model (c0 ¼ 0). It is observed that
the shape of the frozen body given by the Stefan model
agrees well with the one obtained by the general model
(c0 > 0) in the part upgradient of the freeze pipes. The
degree of agreement is somewhat less in the downgradi-
ent region. We found that this result held even for very
high values of the initial concentration c0.

Downgradient of the freeze pipe a wedge of saturated
porous media develops. This occurs because the frozen
region is only partially frozen and solute in the flow
upgradient of the freeze pipe moves with the flow
through the frozen body and concentrates due to
freezing. The contribution of the flow through the
frozen body to the total liquid flux is relatively small
because the hydraulic conductivity decreases rapidly
with decreasing saturation, e.g. KðSÞ < 10�9 for S < 10�3

and n ¼ 3. Although the flow through the body is small,
most of the flow entering the body does so in the vicinity
of the point A as shown by the streamline plot in Fig. 5.
As this flow passes through the body it is diverted
downwards within the frozen body to exit downgradient
of the freeze pipe near the x-axis. This causes the
transport of an aqueous solution to the wedge region
and accumulation of a relatively high concentrated liq-
uid behind the freeze source, thereby delaying and even
halting the growth of the frozen body there. Of course
the Stefan approximation cannot account for this effect.

As mentioned before the frozen bodies will eventually
link up for the case with q > 2Pe, and therefore there is
no steady-state shape for the frozen body.

Fig. 3. Steady-state equilibrium shape of the frozen bodies for Pe ¼ 5.

The numbers from 1 to 5 correspond to the freeze rate q ¼ 5:208, 7.2,

8.8, 9.5, and 9.95 respectively. Numerical solution is presented by solid

lines, while the semi-analytical solution [6] is shown by dotted lines.

The dashed horizontal line illustrates the width of the frozen body

expanded infinitely far downstream from the freeze pipe for the lim-

iting case q ¼ 2Pe.
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In the second case we consider the same set of
parameters as in the first case except that we set q so that
q < 2Pe. For this case there will be a steady-state shape

to the frozen body as mentioned before. We used a non-
uniform grid in both x and y directions with hyj ¼ 0:002
within 06 y6 0:05.

A typical example of the evolution of the frozen body
for the second case is presented in Fig. 6 for c0 ¼ 0:5,
Pe ¼ 5, q ¼ 6, St ¼ 3, and /t ¼ 0:3. The outer boundary
of the frozen body is again represented by the saturation
isoline equal to 0.99, and isolines for saturation are also
shown. The solution provided by the Stefan model
(c0 ¼ 0), which agrees very well with the outer boundary

Fig. 4. Frozen body evolution and linking for the regime q > 2Pe
presented at different times for q ¼ 30, Pe ¼ 5 and c0 ¼ 0:5. The

numbers from 1 to 7 correspond to degree of saturation S ¼ 0:03, 0.1,

0.25, 0.5, 0.75, 0.9 and 0.99 respectively. The dashed line illustrates the

interface obtained by the Stefan model (c0 ¼ 0).

Fig. 5. Streamlines (––) and the shape of the frozen body (- - -) for the

case presented in Fig. 4 at t ¼ 0:45.
Fig. 6. Frozen body evolution and its equilibrium shape for the regime

q < 2Pe presented at different times for q ¼ 6, Pe ¼ 5 and c0 ¼ 0:5. The
numbers from 1 to 6 correspond to degree of saturation S ¼ 0:03, 0.1,

0.25, 0.5, 0.75 and 0.99 respectively. The shape of the frozen body for

c0 ¼ 0 is shown by the dash line.
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described by the general model, is presented by the
dashed line.

The formation of a wedge of saturated porous media
observed to occur for the first case is also seen to occur
for this case as well, but in this case the behavior is
distinctly different. In this case the downgradient ice-free
zone is seen to first grow as a wedge shaped region, but
after a time (at t ¼ 0:62 for instance) the downgradient
end of the wedge begins to grow toward the central axis
of the flow. After a time (t ¼ 4) the ice nearly grows to
the central axis leaving only a very thin channel of ice-
free porous media for the outflow of the liquid from the
wedge. Eventually the frozen edge connects to the cen-
tral axis forming a nearly parabolic liquid ‘island’. The
closure of the downgradient point will essentially cause
cessation of flow out of the liquid island. The liquid in
this liquid island cannot freeze because the solute con-
centration is sufficiently high to prevent further freezing
and this becomes a permanent feature of the ice body
because the liquid is trapped within the liquid island.

For these numerical solutions it was assumed that the
molecular diffusion is zero, and therefore a gradient in
the concentration of the solute within the liquid island
exists once the flow out of the liquid island ceases. The
concentration gradient is from the left to the right in
the figure. If molecular diffusion had been assigned a
finite non-zero value the solute concentration would
equalize, and we hypothesize that this would keep the
small channel open at the downgradient end and liquid
would be able to escape. For that solution, the liquid
island would shrink in size and eventually completely
freeze.

The distribution of liquid saturation within the frozen
body shown in Fig. 6 continues to develop such that
eventually all saturation lines will collapse on the out-
side boundary, meaning that the body becomes fully
frozen, and the shape of the body completely corre-
sponds to the shape given by the Stefan model. This is
also shown in Fig. 7 where the result for the steady-state
Stefan model is demonstrated to coincide with the out-
side boundary simulated by the general solution. The
case shown in Fig. 7 is for the same parameters in Fig. 6
except that the value of c0 is 5.0. As for the case shown
in Fig. 6, the saturation isolines within the frozen body
will eventually collapse on the outside boundary. It is
can be observed by comparison of the results in Figs. 6
and 7 that the width of the liquid island decreases with
decrease in c0.

We found that our numerical solution to the general
formulation has a lower limit for the initial concentra-
tion equal to about c0 ¼ 0:1. For values of c0 less than
0.1 the convergence of the numerical solution was found
to be unsatisfactory. The problem with the convergence
was identified to be associated with the formation of the
liquid island. As mentioned previously, the width of the
liquid island decreases with decrease in c0. We hypoth-

esize that as c0 approaches zero the liquid island will
degenerate into a bounded interval along the x axis.
Such behavior poses difficulties for the numerical solu-
tion. We found that even with a very fine grid satisfac-
tory convergence was not achieved. Solving this problem
will require new numerical procedures.

5. Summary and conclusions

We have developed a numerical solution procedure to
investigate the evolution of frozen bodies developed
around freeze sources installed within flowing ground-
water. The numerical solution for solving the coupled
fluid flow, heat and solute transport equations with
phase change is stable due to the use of an iterative
scheme consisting of a combination of the Newton–
Raphson method and the Gauss–Seidel method. The
solution is applicable to the case of fresh water (the
Stefan problem), as addressed by Kornev and Muk-
hamadullina [6], or to the general case of aqueous
solutions. The unsteady process of frozen body evolu-
tion turns out to be different for the case of an aqueous
solution in comparison to the case of fresh water.
However, the frozen body boundary predicted by the
Stefan solution was found to agree quite well with the
outer boundary predicted by the general solution.

For the case of aqueous solutions, the frozen body is
generally represented as a mushy zone, and the ability of
liquid to move through it results in a zone of high
concentrated brine downgradient of the freeze source.

Fig. 7. Frozen body for c0 ¼ 5, Pe ¼ 5 and q ¼ 6 at t ¼ 20. The

numbers from 1 to 7 correspond to S ¼ 0:03, 0.1, 0.25, 0.5, 0.75, 0.9

and 0.99, respectively. The equilibrium shape of the frozen body given

by the Stefan model is presented by the dashed line.
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Due to the high concentration, the zone cannot be
frozen even after very large duration of freezing. For
lower freezing rate this zone forms into a liquid ‘island’
that becomes a permanent feature of the frozen body.
The width of the liquid island decreases with decrease in
the initial solute concentration.

The numerical method was not able to handle the
limiting case where the initial concentration approaches
zero, because the liquid island becomes very thin, and
this poses particular difficulties for the numerical solu-
tion. New numerical procedures will have to be devel-
oped to solve this problem.
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